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We explore the evolution of the probability density function (PDF) for an initially
deterministic passive scalar diffusing in the presence of a uni-directional, white-noise
Gaussian velocity field. For a spatially Gaussian initial profile, we derive an exact spatio-
temporal PDF for the scalar field renormalized by its spatial maximum. We use this
problem as a test-bed for validating a numerical reconstruction procedure for the PDF via
an inverse Laplace transform and orthogonal polynomial expansion. With the full PDF
for a single Gaussian initial profile available, the orthogonal polynomial reconstruction
procedure is carefully benchmarked, with special attentions to the singularities and the
convergence criteria developed from the asymptotic study of the expansion coefficients,
to motivate the use of different expansion schemes. Lastly, Monte-Carlo simulations
stringently tested by the exact formulas for PDF’s and moments offer complete pictures
of the spatio-temporal evolution of the scalar PDF’s for different initial data. Through
these analyses, we identify how the random advection smooths the scalar PDF from an
initial Dirac mass, to a measure with algebraic singularities at the extrema. Furthermore,
the Péclet number is shown to be decisive in establishing the transition in the singularity
structure of the PDF, from only one algebraic singularity at unit scalar values (small
Péclet), to two algebraic singularities at both unit and zero scalar values (large Péclet).
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1. INTRODUCTION

An extremely important and difficult class of statistical physics problems concerns
the evolution of partial differential equations (PDE) with random coefficients.
Physical examples include the behavior of Schrödinger equations with random
potentials, light waves propagating in random media, and tracers advected by tur-
bulent fluid flows. Partial differential equations are themselves generally viewed
as infinite dimensional systems in finite dimensional spaces, and random PDE
must somehow be understood as such systems. The example of turbulent convec-
tion has elucidated this point succinctly in a broad class of problems involving
diffusing passive tracers in the presence of prescribed, random Gaussian ran-
dom fluid flows(3,7,8,10,14,16,19,23,25) through the recognition that closed evolutions
of the statistical moments are available in high-dimensional spaces. Experimen-
tal and observational data for tracer advections have demonstrated that effects
of random advection may be responsible for setting a strongly non-Gaussian,
heavy-tailed probability distribution function (PDF) for tracer fluctuations as ob-
served both in controlled thermal convection experiments, (9,28) atmospheric wind
measurements, (2) as well as observations of stratospheric inert tracers. (26)

The Chicago convection experiments (9) in fact motivated an enormous the-
oretical effort to understand this scalar intermittency (heavy-tailed scalar distri-
butions) in the context of the linear evolution of a passive scalar diffusing in the
presence of random advection, for extensive summary, see the review article by
Majda and Kramer. (17) The general picture which has emerged is that rare, long
lived, infinitesimal fluctuations in a random velocity are responsible for establish-
ing the heavy tail in diffusing passive scalars. This picture is borne out through
exact calculations involving the high moment asymptotics for statistical moments
of the scalar fields, (8,16) through stochastic analysis, (29) through instanton type
field theoretic calculations, (10) and through numerical simulation. (13,20) All of the
theoretical calculations have involved highly idealized random flow geometries
(either shear layers, or Batchelor flows). Even in those simplified geometries, only
asymptotic information about the PDF tail is available.

To understand what is involved with calculating the PDF or the solution of a
stochastic PDE, path integrals are generally unavoidable. To see this, consider the
evolution of a diffusing passive tracer advected by a general stochastic velocity
field Vω(�x, t). Given a fixed realization of Vω(�x, t), the scalar T is uniquely
determined by the Feynman-Kac’s formula:

T (�x, t) = EB[T0( �XB,ω(t))] (1.1)

where EB is the statistical average over all the paths �XB,ω(s), 0 ≤ s ≤ t which
satisfies the Stochastic Differential Equation:

d �XB,ω(s) = −Vω( �XB,ω(s), t − s) ds +
√

2κ dB(t), �XB,ω(0) = �x (1.2)
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with B(t) as the standard Brownian Motion and κ is the molecular diffusivity of the
scalar. Therefore, the PDF for the scalar T conditioned on Vω is a Dirac measure
δ(T − EB[T0( �XB,ω(t))]). However, the unconditioned PDF for T is simply not
tractable in general, since one has to integrate over all realizations of Vω, namely,

P(T ) =
∫

�

p(T |Vω)p(Vω) dµ(Vω) =
∫

�

δ(T − EB[T0( �XB,ω(t))])p(Vω) dµ(Vω)

(1.3)

where � is the space of all realizations of the random velocity field Vω and
dµ(Vω) is the measure associated to the particular path. When the velocity field
admits randomness in both space and time, only very few analyses exist. For
example, Kraichnan derived closed evolution equations for statistical moments
in rapidly fluctuating fluid flows (white noise limit), (14) and Majda rigorously
established, using path integral methods, the general evolution equation govern-
ing the N -point correlation function for stationary (in space and time) random
shear layers. (15) Also, for scalar fields evolving in an imposed mean scalar gra-
dient (a maintained, large-scale spatially linear scalar profile), Bourlioux and
Majda have presented the long time PDF analysis for shear layers with a trans-
verse, temporally varying wind field. (6) For some special cases in which the fluid
flows are functionally dependent upon a finite number of stochastic processes
w j (t), (3,7,8,10,16,19) progress can be made. For example, for fluid flows admitting
a linear spatial structure (such as the Majda model which is a linear shear mul-
tiplied by temporally varying, Gaussian white noise), an explicit solution to the
conditional Feynman-Kac solution in (1.1) is available by the method of charac-
teristics. Even with this explicit, random Green’s function, obtaining the complete
probability measure for the random, advected scalar is not possible in general,
and requires consideration of the second functional integral in (1.3). Currently,
for random, spatially linear fluid flow, existing general results have succeeded in
calculating, in closed form, the statistical moments and the PDF tail, (3,7,8,16,19,29)

but not the full measure.
Our purpose here is to present a model for which the entire spatio-temporal

PDF may be explicitly calculated, and use this model to develop numerical tech-
niques which can be used to calculate a PDF from its statistical moments. By
focusing on a uni-directional, constant in space, rapidly fluctuating (white in
time), Gaussian random advection, we establish here a family of models for which
the statistical moments are explicit simple algebraic expressions for any moment
number, and for which the complete, explicit, spatio-temporal probability density
function is available for specialized initial data. In turn, for more complex initial
data, we present a reconstruction procedure based upon orthogonal polynomial
expansion, which can approximate the exact PDF very well with a relative error
of less than 1% when the first 4 moments are used for the summation, along
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with high moment number moments asymptotically equal to true moments. Then
we use these tools to benchmark Monte-Carlo simulations showing the spatio-
temporal evolution of more general PDFs. These calculations give a rigorous and
complete demonstration of the role which the Péclet number, a nondimensional
number which measures the relative importance of advection versus diffusion,
plays in adjusting the spatial structure of the PDF. Surprisingly, even in this sim-
ple flow, the interaction of advection with diffusion is very complicated, and the
dynamics smooth in a precise way the initially Dirac scalar distributions for the
deterministic initial data. The Péclet number is shown to move these algebraic
singularities from the diffusion dominated regime, with probability focused at the
highest scalar values, to the advective dominated regime, with probability collect-
ing at the zero scalar value. For general models where only moment information is
available, such as the Majda model, (7,8,16,19) the reconstruction procedure is also
applicable, provided that the scalar can be renormalized onto a bounded interval,
which will be explored in future work.

The paper is organized as follows: In Sec. 2, the simple, random advection-
diffusion problem is mathematically formulated and the main results of this paper
are presented. In Sec. 3, the formulas for the exact PDF and the statistical moments
of the renormalized scalar field are derived, and we investigate some asymptotic
limits of the PDF. Sections 4 and 5 present the theoretical analysis and numerical
results of reconstructing the PDF from its statistical moments using orthogonal
polynomials. Further, we show how modified regularization function and orthog-
onal basis improve the reconstruction, as well as the rigorous estimates of the
decay rate of the Chebyshev coefficients in the series expansion. In Sec. 6, a
Monte-Carlo simulator for the subject problem is developed and benchmarked for
different initial data, whose results are used to study the spatio-temporal dynamics
of the PDF of the scalar field. Lastly, the concluding remarks and some discussion
on the future work are given in Sec. 7. The details of some calculations in the
paper are listed in Appendix.

2. PROBLEM FORMULATION AND MAIN RESULTS

We consider the evolution of a decaying passive scalar with a random uni-
directional, spatially constant wind, for ease in exposition, restricted to one spatial
dimension. The governing stochastic PDE with Stratonovich’s interpretation(12) is:

∂T

∂t
+ γ (t)

∂T

∂x
= κ

∂2T

∂x2
, −∞ < x < ∞, t > 0 (2.1)

T | t=0 = T0(x)
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where κ is the tracer’s molecular diffusivity and γ (t) is a Gaussian white noise,
i.e.,

〈γ (t)〉γ = 0, 〈γ (t)γ (t ′)〉γ = σ 2δ(t − t ′) (2.2)

where 〈·〉γ denotes the ensemble average over the statistics of γ .
Suppose that the initial data T0(x) has a typical length scale L . Then we

have three dimensional parameters, σ 2, κ and L , from which we can only form
one non-dimensional parameter for Eq. (2.1), the Péclet number Pe = σ 2/κ ,
that characterizes the intensity of the random advection relative to molecular
diffusion. If we let x ′ = x/L , τ = tσ 2/L2 and γ ′(τ ) = γ (t)L/σ 2, the evolution
of the tracer is governed by the non-dimensionalized equation

∂T

∂τ
+ γ ′(τ )

∂T

∂x ′ = 1

Pe

∂2T

∂x ′2 (2.3)

T | τ=0 = T ′
0(x ′)

where γ ′(τ ) is the non-dimensionalized white noise and 〈γ ′(τ )γ ′(τ ′)〉γ ′ = δ(τ −
τ ′). Notice that the length scale L does not appear in the Eq. (2.3). The initial length
scale is irrelevant here since if we have a different length scale L̃ in the data, then
letting x̃ = x ′ L̃/L and τ̃ = τ L̃2/L2 will recover exactly the same Eq. (2.3) but
in the variables (x̃, τ̃ ). This feature is essentially introduced by the vanishing
autocorrelation time of the white noise.

This particular time varying fluid flow, while trivial in spatial structure, gives
rise to an interesting family of scalar probability measures. These measures give
a connection between the respective limits of high and low Péclet number. At
zero Péclet (no advection), the solution is trivial, and the ensuing probability
measure for the values of the scalar field normalized by the spatial maximum
is simply a Dirac mass (delta function) with support set by heat solution (see
Result 1, and weak convergence calculations below in Sec. 2.5). At the alternative
limit, we will see that in the limit of vanishing diffusion the probability measure
for renormalized tracer values is also a Dirac mass (delta function) at large times,
only with different support set. For finite, non-zero Péclet numbers, the probability
measure is a smoother distribution, set by a competition between random advection
and diffusion, which we can explicitly compute in this special case to see the
connection between these two distributional limits.

The main results of this paper are the following:

Result 1. For initial data T0(x) = e−x2
, at any fixed location x and time t, the

random scalar T (x, t) can be renormalized by a deterministic function Tmax(t) =
1√

4κt+1
, so that the ensuing probability density function (PDF) for ξ ≡ T (x,t)

Tmax(t) has
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compact support, namely,

Prob(ξ /∈ [0, 1]) = 0 (2.4)

Moreover,

1. The exact spatio-temporal PDF of the renormalized random scalar ξ is

Px,t (ξ ) =
√

1

βπ

e− x2

a ξ
1
β
−1 cosh

√
− 4b′x2

a2 ln ξ
√− ln ξ

(2.5)

for any ξ ∈ (0, 1), where

a = 2σ 2t, b′ = 4κt + 1, β = a/b′ → Pe

2
(t → ∞) (2.6)

This measure has a singular structure at ξ = 1 and if β > 1, x �= 0, it is
also singular at ξ = 0. It converges weakly to the Dirac delta measure δ(ξ )
when β → ∞ (high Péclet number limit for pure random advection) and

to δ(ξ − e− x2

b′ ) when β → 0 (low Péclet number limit for pure diffusion).
2. The N th statistical moment of the random tracer T (x, t) can be computed

analytically as:

〈T N (x, t)〉γ = e− N x2

Na+b′
√

Nab′N−1 + b′N (2.7)

for N = 0, 1, 2, . . .

3. We formally expand the PDF of the renormalized random tracer by
orthogonal polynomials as

Px,t (ξ ) =
∑∞

n=0 Cn Qn(ξ )

r (ξ )
(2.8)

where {Qn(ξ )}∞n=0 is a family of orthogonal polynomials defined on [−1, 1]
or [0, 1], r (ξ ) is a regularization function and the coefficients Cn are ob-
tained from the statistical moments of the tracer (2.7). For a specific choice
of the polynomial family and r (ξ ), the pointwise convergence of these re-
constructions depends on the values of x and β. Given the convergence,
the fact that P(ξ ) is compactly supported by [0, 1] guarantees the unique-
ness of the expansion. Moreover, with the shifted Chebyshev polynomials,
the reconstructed PDF has a relative error of less than 1% when the first
4 moments are used for the summation (2.8).

Result 2. For the bimodal initial data T0(x) = ∂(e−x2
)

∂x = 2xe−x2
, T (x, t) can also

be renormalized by Tmax(t) =
√

2e−1

4κt+1 , such that Prob(ξ /∈ [−1, 1]) = 0. So again
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the probability measure is compactly supported. In this case, the exact, closed-
form PDF for the renormalized tracer is available only in a long time limit and it
is related to the two branches of the Lambert W-functions. (11) However, the exact
statistical moments of the random tracer T (x, t) are still available at all times
in analogy to (2.7). Thus we are able to reconstruct the PDF with orthogonal
polynomials as described in Result 1.2.

Result 3. Monte-Carlo (MC) simulations, benchmarked on Result 1, present
a detailed picture for the spatio-temporal evolution of the PDF when the exact
solution to the moment problem is unknown. The simulation results also illus-
trate how different values of Péclet number change the spatial structure of the
PDF. Further, simulations are preformed for initial data T0(x) = 2xe−x2

and
T0(x) = e−(x−A)2 + e−(x+A)2

respectively, for which exact PDF’s at all times are
not available.

3. DERIVATION OF THE EXACT PDF AND MOMENTS

3.1. Exact PDF for T0(x) = e−x2

For the unimodal, Gaussian initial data T0(x) = e−x2
, the exact PDF for

the evolving random scalar field T (x, t) can be computed analytically via direct
statistical inversion, since

T (x, t) = 1√
1 + 4κt

exp

(
− (x − W (t))2

1 + 4κt

)
(3.1.1)

which is a random translation of the pure heat solution, where W (t) = ∫ t
0 γ (s)ds

is a Wiener Process. (12) For example, when x = 0

Prob(
√

1 + 4κt T (0, t) ≤ ξ ) = Prob

(
e− (W (t))2

1+4κt ≤ ξ

)

= 1 − Erf

(√
−1 + 4κt

2σ 2t
ln ξ

)
(3.1.2)

where Erf(·) is the error function. Therefore, the ensuing probability density
function is

P0,t (ξ ) := ∂

∂ξ

[
1 − Erf

(√
−1 + 4κt

2σ 2t
ln ξ

)]
= ξ

1
β
−1

√−βπ ln ξ
. (3.1.3)

with β = 2σ 2t
1+4κt . To recover the general case (2.5) for x �= 0, similar but more

complicated algebra as in Eq. (3.1.2) is needed. Instead, we follow an alternative
derivation using Laplace inversion in Sec. 3.4.
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3.2. Exact Statistical Moments for General Initial Data

For general initial data, the direct statistical inversion technique shown in
Eq. (3.1.2) is not always applicable, even when an analytic solution similar to
Eq. (3.1.1) is available. However, the exact statistical moments of the random
scalar are often accessible. The solution to Eq. (2.1) can be written via Fourier
transform as:

T (x, t) =
∫ ∞

−∞
e2π ik[x−W (t)]−4π2κk2t T̂0(k) dk (3.2.1)

where T̂0(k) is the Fourier transform of T0(x). In fact, this is just a “drifted” version
of the fundamental heat solution, spatially shifted by −W (t). Consequently, we
have the following formula for arbitrary moments of the tracer field, T , satisfying
Eq. (2.1):

〈T N (x, t)〉γ=
〈

N∏
j=1

T (x j , t)

〉

γ

=
∫

RN

e2π ik·x−4π2κ|k|2t
〈
e−2π i

∑N
j=1 k j W (t)

〉
γ

N∏
j=1

T̂0(k j ) dk

(3.2.2)

with x = (x1, x2, . . . , xN ) = (x, x, . . . , x) and k = (k1, k2, . . . , kN ).
Since −2π i

∑N
j=1 k j W (t) is a mean-zero, Gaussian random variable, we

have 〈
e−2π i

∑N
j=1 k j W (t)

〉
γ

= e−2π2σ 2t(
∑N

j=1 k j )2
. (3.2.3)

and Eq. (3.2.2) reduces to

〈T N 〉γ =
∫

RN

e2π ik·x−kT AN k
N∏

j=1

T̂0(k j ) dk (3.2.4)

where

AN = π2

⎛
⎜⎜⎝

a + b a · · · a
a a + b · · · a

. . . . . . . . . . . . . . . . . . . . . .
a a · · · a + b

⎞
⎟⎟⎠ (3.2.5)

with

a = 2σ 2t and b = 4κt (3.2.6)

Since AN is symmetric positive definite, computing the exact moments is
equivalent to diagonalizing a quadratic form. We start with the special case

T0(x) = δ(x) (3.2.7)
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and thus
∏N

j=1 T̂0(k j ) = 1. The familiar result for a N -dimensional Gaussian
integral reads:

〈T N (0, t)〉 =
∫

RN

e−kT AN kdk = π
N
2√

det AN
(3.2.8)

The determinant in the denominator does not vanish provided b �= 0 in Eq. (3.2.6)
and it can be easily shown by induction that det AN = π2N (NabN−1 + bN ). For
x �= 0, we need to diagonalize AN as AN = V ′�V where V = {�vi }N

i=1 = {vi j }N
i, j=1

is the orthogonal matrix composed of AN ’s eigenvectors and � is the diago-
nal matrix of its eigenvalues. Changing variables by k̄ = V k, Eq. (3.2.4) becomes:

〈T N (x, t)〉γ =
∫

RN

e
2π i x

N∑
m,n=1

k̄mvmn−π2b
N−1∑
m=1

k̄2
m−π2(Na+b)k̄2

N

dk̄

= π
N
2√

det AN
e
−x2

(∑N−1
m=1 V 2

m
b + V 2

N
Na+b

)
(3.2.9)

= π− N
2√

NabN−1 + bN
e− N x2

Na+b

where Vm = ∑N
n=1 vmn, m = 1, 2, . . . , N . We will prove Eq. (3.2.9) by showing

Vm = 0 for m < N , VN = √
N in Appendix. In particular, when x = 0, we retrieve

formula (3.2.8).
To generalize Eq. (3.2.9) for arbitrary T0(x), we just apply the Convolution

Theorem to Eq. (3.2.2) and read

〈T N 〉γ = π
N
2√

det AN

∫
R

N
exp

(
−1

b

[
|y|2 − a

(∑N
j=1 y j

)2

aN + b

])
N∏

j=1

T0(x − y j ) dy

(3.2.10)

In particular, for T0(x) = e−x2
, Eq. (2.7) is recovered by computing the above

integral, which is the same as in the case of T0(x) = δ(x) except that b is replaced
by b′ = b + 1.

Now we introduce the random variable ξ := T (x,t)
Tmax(t) and its N th-order statisti-

cal moment MN := 〈ξ N 〉γ and we denote its PDF by Px,t (ξ ). Since

MN =
∫ ∞

−∞
ξ N Px,t (ξ ) dξ ≥

∫ ∞

1
ξ N Px,t (ξ ) dξ ≥

∫ ∞

1
Px,t (ξ ) dξ = Prob(ξ > 1)

(3.2.11)
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and from Eq. (2.7)

MN = 〈T N (x, t)〉γ
T N

max(t)
= e− N x2

aN+b′
√

1 + βN
→ 0 (3.2.12)

as N → ∞, we conclude that Prob(ξ > 1) = 0 which ultimately leads to
Eq. (2.4). This seems redundant here by the simple definition of ξ , while an
analogous argument is useful to infer a compactly-supported measure when only
the moment information of ξ is available.

3.3. Long Time Asymptotics of the Moments

In the long-time limit, we can apply Eq. (3.2.8) to study the asymptotic
behavior of the moments for more general initial conditions and at locations away
from the origin. Without loss of generality, we use some of the results from
Eq. (3.2.9) through (3.2.10) and consider

〈T N 〉γ =
∫ ∞

−∞
e2π i

√
N xk̄N −π2(Na+b)k̄2

N −π2b
∑N−1

n=1 k̄2
n

N∏
n=1

T̂0(k̄n) dk̄ (3.3.1)

for an unknown, general T0(x). For a large time t , if we rescale k̄ as k̄ = k√
t
, when

t → ∞,

〈T N 〉γ =
∫ ∞

−∞
e2π i

√
N xk̄N −π2(Na+b)k̄2

N −π2b
∑N−1

n=1 k̄2
n

N∏
n=1

T̂0(k̄n) dk̄

= t− N
2

∫ ∞

−∞
e2π i

√
N x

kN√
t
−π2 Na+b

t k2
N −π2 b

t

∑N−1
n=1 k2

n

N∏
n=1

T̂0

(
kn√

t

)
dk (3.3.2)

∼
(

π T̂ 2
0 (0)

4κt

) N
2 1√

1 + σ 2 N/(2κ)

provided T̂0(0) �= 0 and the quantities a
t and b

t have finite limits as t → ∞, which
is guaranteed by definition (3.2.6) given finite σ 2 and κ . Therefore, in the long time
limit, the statistical moments of T are independent of x . To see this, observe that the
last two factors in the exponent of the exponential are time-independent constants
through Eq. (3.2.6). Consequently the complex part of the exponential is subdomi-
nant at long time. Notice that this asymptotic convergence should be uniform only
over compact sets, which will be illustrated in Section 6 without a rigorous proof.
More importantly, from Eq. (3.3.2), the tracer field can be renormalized such that
the moments of the renormalized tracer ξ , 〈ξ N 〉, are asymptotically self-similar,
namely, independent of both x and t for large times.
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3.4. Exact PDF and the Inverse Laplace Transform of the Moment

Function

The problem of determining a compactly-supported measure P(ξ ) dξ from
its moments is known as the Hausdorff Moment Problem. Once the exact moment
of arbitrary order is determined, the problem has a unique solution. (24) Define the
moment function of P(ξ ) as

µ(s) =
∫ 1

0
ξ s P(ξ ) dξ =

∫ ∞

0
e−st e−t P(e−t ) dt = L[e−t P(e−t )](s) (3.4.1)

whose values evaluated at s = 0, 1, 2, . . . are exactly the statistical moments of P .
Then

P(ξ ) = L−1[µ(s)](− ln ξ )

ξ
(3.4.2)

For the particular initial data T0(x) = e−x2
, we know from Eq. (2.4) that the PDF

of the renormalized tracer ξ is compactly supported by [0, 1]. Now define

µ∗(s) := e− sx2

as+b′
√

1 + βs
. (3.4.3)

It follows from Eq. (3.2.12) that µ∗(N ) = 〈ξ N 〉γ for N = 0, 1, 2, . . .. If µ(t) ≡
µ∗(t), the exact PDF (2.5) for the renormalized random tracer can also be derived
via the inverse Laplace Transform of µ∗(t) through Eq. (3.4.2). The necessary and
sufficient conditions for µ(t) ≡ µ∗(t) may be found in the literature. (24) However,
these conditions appear difficult to verify analytically. Alternatively, we perform
the Laplace Transform for µ∗(t) and compare a posteriori the result with Eq. (2.5).
First notice that

µ∗(s) =
√

a

x
e− x2

a
e

1
s′√
s ′ =

√
a

x
e− x2

a µ̄(s ′) (3.4.4)

with s ′ = a2s
x2b′ + a

x2 and we assume a, b′, x �= 0 without loss of generality. We can
show that (1)

L−1[µ∗(s)](t) =
√

a

x
e− x2

a L−1

[
µ̄

(
a2s

x2b′ + a

x2

)]
(t)

= b′√a

a2x
e− x2

a − b′
a tL−1[µ̄(s)]

(
b′x2t

a2

)
(3.4.5)

=
√

1

βπ

e− t
β
− x2

a cosh
√

4b′x2t
a2√

t
.
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Assuming µ(t) ≡ µ∗(t), then Eq. (3.4.2) and Eq. (3.4.5) yield the explicit formula
for Px,t (ξ ) which is identical to Eq. (2.5).

3.5. Distinguished Limits of the Péclet Number for T0(x) = e−x2

If we consider the special case x = 0 for the exact moments Eq. (3.2.12) for
the renormalized tracer ξ , two special cases emerge:

1. 0 < β � 1. In the limit β → 0 evidently 〈ξ N 〉γ → 1 for any N .
2. β � 1. In the limit β → ∞ 〈ξ N 〉γ → 0 for any N > 0 except N = 0.

These two cases can be interpreted as the weak convergence of the PDF

Px,t (ξ ) =
√

1

βπ

ξ
1
β
−1

√− ln ξ
(3.5.1)

to Dirac delta measures when β → 0/∞. An important fact is that for fixed σ and
κ , β is an increasing function of t and

lim
t→∞ β = lim

t→∞
2σ 2t

1 + 4κt
= σ 2

2κ
= Pe

2
. (3.5.2)

It is not hard to generalize this result for x �= 0 in the long time limit, from
Eq. (3.3.3), since Px,t (ξ ) is independent of x and it is only controlled by the
Péclet number. Consequently, the distinguished limits of Px,t (ξ ) at large times as
Pe → 0/∞ are equivalent to the singular limits as β → 0/∞. For any test function
φ(ξ ) defined on [0, 1], we have

∫ 1

0
Px,t (ξ )φ(ξ ) dξ = 1√

π

∫ 1

0

√
1

β

e− x2

a ξ
1
β
−1 cosh

(
2
√

− b′x2

a2 ln ξ
)
φ(ξ )

√− ln ξ
dξ

≈ 2√
π

∫ ∞

0
e−y2

φ
(
e−(

√
β y− x√

b′ )2)
dy (3.5.3)

after the change of variable y =
√

− ln ξ

β
+ x√

a
. Thus formally

∫ 1

0
P0,t (ξ )φ(ξ ) dξ →

⎧⎨
⎩

2√
π
φ
(
e− x2

b′
) ∫∞

0 e−y2
dy = φ(e− x2

b′
)
, β → 0

2√
π
φ(0)

∫∞
0 e−y2

dy = φ(0), β → ∞
(3.5.4)



PDF’s for Passive Scalar Diffusion in a Random Flow 939

Therefore Px,t (ξ ) converges to δ(ξ − e− x2

b′ ), which is exactly a Dirac delta measure
at the pure heat solution, as β → 0 and to δ(ξ ) as β → ∞, in a distributional sense.
When β goes to 0, the random effects becomes negligible and the original Eq.
(2.1) “degenerates” to a simple, deterministic heat equation. Thus the tracer will
always be the pure heat solution with probability 1. In contrast, when β → ∞,
at any fixed spatial location x , the deterministic pure solution at that location is
shifted by the random drift so far away, that T (x, t) will almost certainly assume
the infinitesimal values in the tails of the flattening Gaussian profile, namely,
T (x, t) = 0 with probability 1.

For intermediate values of β, as we will see in the next section, the large
moment asymptotics provide valuable information for the reconstruction of the
PDF via orthogonal polynomials, when the exact PDF is unknown. Further, the
values of β and x determine the convergence of the series reconstruction.

4. PDF RECONSTRUCTION FROM MOMENTS USING

ORTHOGONAL POLYNOMIAL APPROXIMANTS

4.1. Motivation

As we mentioned before, the exact PDF for a tracer undergoing random ad-
vection and diffusion is generally unavailable while the exact moments are often
accessible. Eq. (3.1.2) and (3.2.12) showed that renormalizing the moments of
T (x, t) by the maximum of the heat solution for T0(x) = e−x2

leads to a measure
compactly-supported by the interval [0, 1]. Techniques to reconstruct the distri-
bution function D(ξ ) = ∫ ξ

a P(s)ds via Legendre polynomials using the moments
exist in literature, (24) when the density function P(ξ ) is compactly supported.
However, the resulting distribution function will always be of bounded variations,
while the PDF’s we derived above have singularities and thus do not have a conver-
gent, canonical Legendre expansion. Therefore in this paper, we seek for a direct
polynomial reconstruction for the PDF, with coefficients also determined by the
exact statistical moments. As a test problem, we implement this idea to the case
T0(x) = e−x2

, for which the exact PDF (2.5) benchmarks the procedure and in turn
we use the reconstructions to infer the behavior of more complicated measures.

4.2. Choice of Orthogonal Polynomials

To reconstruct the PDF as a series expansion, first we have to make a choice
on the family of orthogonal polynomials defined on a bounded domain. Two
canonical choices of such polynomials are Legendre polynomials and Chebyshev
polynomials. We elect to use the Chebyshev polynomials of the first kind be-
cause, as we now show, the large moment asymptotics of our unknown PDF have
the same scalings as those induced by any linear combination of orthonormal
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Chebyshev polynomials. The key to verify this assertion lies in the particular
weight function, (

√
1 − ξ 2)−1, for Chebyshev polynomials. Observe that if the

measure is approximated as the zeroth order Chebyshev polynomial divided by
the weight function and multiplied by a normalization constant

P0,t (ξ ) ≈ 2 T0(ξ )

π
√

1 − ξ 2
= 2

π
√

1 − ξ 2
,

then the large moment asymptotics are given by the following sequence of calcu-
lations:

π

2
〈ξ N 〉γ ≈

∫ 1

0

ξ N√
1 − ξ 2

dξ =
∫ ∞

0

e−(N+1)u

√
1 − e−2u

du ∼
√

π

2

1√
N + 1

(4.2.1)

when N is large. This has the same large N asymptotic scalings as the moments
given in Eq. (3.2.12) when β = 1 and x = 0. Moreover, it is natural to anticipate a
singularity in the PDF at ξ = 1, introduced by

√
1 − ξ 2 in the denominator, since

the initial PDF at x = 0 is a Dirac delta function δ(ξ − 1).
We next assume that Px,t (ξ ) has the following formal series representation:

Px,t (ξ ) =
∑∞

m=0 Cm Tm(ξ )√
1 − ξ 2

(4.2.2)

where Tm(x), m = 0, 1, . . . is the mth order Chebyshev polynomial of the first
kind. As we will next see, this ansatz will lead to great simplification for the
construction of the PDF. Again, Eq. (4.2.2) assumes a singularity at ξ = 1. In fact,
in the absence of random advection, β = a/b′ = 0, P0,t is nothing more than a
Dirac delta function δ(ξ − 1), which is singular at 1. As β increases, the random
drift causes non-vanishing probability for ξ �= 1. But when a is “not too big,” it
is reasonable to assume that the singularity at ξ = 1 persists. For x �= 0, this is
still physically plausible because of the diffusive property of the equation. Indeed,
with the exact PDF known in this case, the singularity is obvious from Eq. (2.5).

4.3. Obtaining the Expansion Coefficients via Extensions of the PDF

The Chebyshev polynomials are defined on [−1, 1] whereas Px,t is on [0, 1].
We may easily extend Px,t , evenly or oddly, to [−1, 1], to make use of standard
Chebyshev identities. Denote the extended PDF as P̃x,t . The coefficients Cn may
then be computed directly in terms of the moments, Mn = 〈ξ N 〉γ , through the
orthogonality of the Chebyshev polynomials, to wit:

∫ 1

−1
Tn(ξ )P̃x,t (ξ )dξ =

∫ 1

−1

∑∞
m=0 Cm Tm(ξ )Tn(ξ )√

1 − ξ 2
dξ = Cn wn (4.3.1)
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where wn , the norm of Tn(ξ ) squared with weighting function 1√
1−ξ 2

, is π when

n = 0 and π
2 otherwise; at the same time

∫ 1

−1
Tn(ξ )P̃x,t (ξ )dξ =

∫ 1

−1

n∑
m=0

bnmξ n P̃x,t (ξ ) dξ

=
n∑

m=0

bnm

∫ 1

−1
ξ n P̃x,t (ξ ) dξ =

n∑
m=0

bnm M̃m (4.3.2)

where

• B = {bnm}∞n,m=0 is the transfer matrix from the monomial basis {ξ n}∞n=0 to
the Chebyshev basis {Tn(ξ )}∞n=0;

• M̃m is the mth moments of P̃x,t , namely, for even extension M̃n = 2Mn if
n is even and M̃n = 0 otherwise, and vice versa for odd extension.

Therefore, equating the right-hand-sides of Eqs. (4.3.1) and (4.3.2), for even
extension we have only the even-ordered terms survived in the series expansion
(4.2.2), namely, C2n−1 = 0, n = 1, 2, . . .. Plugging in explicit formulas for bnm
(1) and M̃m , we have C0 = 2

π
and

C2n =
∑2n

m=0 b2n,m M̃m

w2n
= (−1)nn

π

n∑
m=0

(−1)m 22m+2 (n + m − 1)!

(n − m)! (2m)!

e− 2mx2

2ma+b′
√

1 + 2βm

(4.3.3)

for n = 1, 2, . . .. Alternatively, we can invert the above formula to get

M2n = 4n−1�2(n)

π�(2n)

n∑
m=0

C2m w̄2m, n = 1, 2, . . . (4.3.4)

with w̄m = 1 if m = 0 and w̄m = 2 otherwise. This is a finite sum and it sug-
gests that for any fixed N > 0, the 2N -term truncation of the series (4.2.2)
with coefficients Cm, m = 0, 1, . . . , 2N − 1 defined above will generate the
first N even moments identical to those of the true PDF. Furthermore, utiliz-
ing (3.2.12) and the asymptotic property of Gamma functions, (1) if we define

C2N = √
π/(2β)e− x2

a − ∑N−1
m=1 C2m − 1

2 C0, the resulting (2N + 1)-term trunca-
tion will have large evenmoments Ma

2n asymptotically equal to the true moments
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Table I. Px,t (0) for Different x’s

and β’s

Px,t (0) x = 0 x �= 0

β < 1 0 0
β = 1 0 ∞
β > 1 ∞ ∞

M2n as n → ∞, since

Ma
2n = 4n−1�2(n)

π�(2n)

N∑
m=0

C2m w̄2m

= 22n−1�2(n)

�(2n)
√

2πβ
e− x2

a ∼ e− x2

a√
2βn

∼ M2n, n → ∞. (4.3.5)

It may seem unusual that we are able to reconstruct the measure using only
half of the moments, namely, even or odd. However, this is justified through the
Müntz-Szasz Theorem, (22) which guarantees us that the expansion of Px,t (ξ ) using
only the Chebyshev polynomials with even powers in Eq. (4.2.2) is unique and it
assumes pointwise convergence on [0, 1], if

√
1 − ξ 2 Px,t (ξ ) ∈ C[0, 1]. Essentially,

it is because the expansion can be re-written as a linear combination of {xλi }∞i=0,
where λi = 2i which satisfies

∑∞
i=0

1
λi

= ∞. Thus, these polynomials are dense
in C[0, 1] and can be extended to C[−1, 1] without any complication. This is
also true for the odd extension case, except that we have to assume Px,t (0) = 0
such that

√
1 − ξ 2 Px,t (ξ ) is continuous at ξ = 0 to apply the result. However,

this assumption may be false for some values of x and β. Recall the exact PDF
(2.5) and the fact Px,t (0) := limξ→0+ Px,t (ξ ), Table 1 summarizes the values of
Px,t (0) for different x’s and β’s and whenever Px,t (0) = ∞, the expansion is not
convergent at ξ = 0, since in such cases

√
1 − ξ 2 Px,t (ξ ) /∈ C[0, 1]. This leads to

the next discussion on the role
√

1 − ξ 2 is playing.

4.4. Regularization Function

It is known that any continuous function on [−1, 1] can be expanded
as a pointwise convergent series with Chebyshev polynomials. (18) And from
Eqs. (4.2.2) and (4.3.1), it is clear that we are essentially expanding the func-
tion f (ξ ) =

√
1 − ξ 2 Px,t (ξ ). However, Table 1 suggests that the series does not

always converge pointwise, since f (0) may diverge. This is not surprising from
the exact formula of the PDF (2.5) because f (ξ ) can be discontinuous at ξ = 0
when β > 1 or x �= 0. As we will see in the next section, this will lead to the
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failure of the numerical series reconstruction, as the sum of polynomials diverges
at the singularities.

Now we see that, if we can find a proper regularization function r (ξ ) such that
f (ξ ) = r (ξ )P̃x,t (ξ ) belongs to, or can be extended continuously to C[−1, 1], its
series expansion will assume pointwise convergence in [−1, 1], whose coefficients
should still be computed from the statistical moments, namely,

fnwn =
∫ 1

−1
f Qn w dξ =

∫ 1

−1
r P̃ Qn w dξ

=
∫ 1

−1
ξ k P̃ Qn dξ =

n∑
m=0

bnm M̃m+k (4.4.1)

in which k is a non-negative integer and f, Qn, w, r and P̃ are all functions
of ξ . For example, in the previous discussion, r (ξ ) was taken to be 1/w(ξ ) =√

1 − ξ 2. Consequently, k = 0 in Eq. (4.4.1) and we recover the formula for
fn = Cn shown in Eq. (4.3.2). It can be verified that this leads to f (0) = ∞; while
for r (ξ ) = ξ

√
1 − ξ 2, f (0) = 0 for any x and β, yet it still allows us to compute

the coefficients in the series using statistical moments by making r (ξ )w(ξ ) = ξ

and thus k = 1 in Eq. (4.4.1).
Moreover, the extensions for the PDF can be avoided by using alternative

families of orthogonal polynomials for different r (ξ ), then the interval [−1, 1] can
be replaced with [0, 1]. One of these families is the shifted Chebyshev polyno-
mials of the first kind, T ∗

n (ξ ) = T2n(
√

ξ ), n = 0, 1, 2, . . . for any ξ ∈ [0, 1], and
the corresponding weight function is w∗(ξ ) = 1/

√
ξ (1 − ξ ). The motivation of

choosing this family is to capture the singularity at ξ = 0, which is smoothed out
by extension if standard Chebyshev polynomials are used. A similar calculation
as in Eq. (4.2.1) shows that they also yield the same large n asymptotic scaling
for the moments. Further, if we re-define r (ξ ) =

√
ξ 3(1 − ξ ), Eq. (4.4.1) is then

modified as

fnwn =
∫ 1

0
r (ξ ) P(ξ ) T ∗

n (ξ ) w∗(ξ ) dξ

=
∫ 1

0
ξ P(ξ ) Qn(ξ ) dξ =

n∑
m=0

bnm Mm+1. (4.4.2)

It is not hard to show that f (ξ ) =
√

ξ 3(1 − ξ ) P(ξ ) for any probability mea-
sure P singular at 0 can be extended continuously to C[0, 1] and the series ex-
pansion converges pointwise for any x and β, from the integrability of P . Con-
sequently the coefficients in the ansatz (2.8) with Qn(ξ ) = T ∗

n (ξ ) is obtained by
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similar calculations as in Eq. (4.3.1) through (4.3.3) which read

Cnwn =
∑n

m=0
bnm Mm+1 (4.4.3)

where again, M is the statistical moment, {bnm}∞n,m=0 is the transfer matrix and wn

is the normalization constant. Notice that M0 = 1 is not present in the computation.
In the next section, some examples show how this orthogonal basis improves the
reconstruction.

Further, this idea can potentially be generalized to any PDF without a priori
knowledge of its singular structure other than the locations of the singularities,
since one can always choose the regularization function to be the product between
the weight function of the orthogonal basis, w(ξ ), and

∏N
i=1(ξ − ξ ∗

i ), in which
ξ ∗

i , i = 1, . . . , N are the points where P(si ) diverges, to meet the requirements
of 1) the convergence of the series expansion and 2) the computability of the
coefficients from the moments. However, one does need to identify ξ ∗

i before the
expansion, either from physical or mathematical considerations, which we have
mentioned in Sec. 4.2 and we will revisit this in Sec. 6.4. Notice that even if
P(ξ ∗) < ∞ for some ξ ∗, it is clear that the series expansion still converges and we
can still extract the correct PDF. Thus, we can remove all the possible singularities
for series expansion to guarantee the convergence.

4.5. Large-n Asymptotics of the Coefficients Cn

Of course, the choice of polynomial family is not restricted to Chebyshev
polynomials. For example, we can also re-define r (ξ ) = ξ (1 − ξ ) and use Legendre
polynomials for reconstruction. Nonetheless, a Chebyshev basis does allow us to
have a rigorous estimate of the remainder of the series, by applying the method
of steepest descent to study the asymptotic behavior of the coefficients Cn for n
large. For Qn(ξ ) = Tn(ξ ), we can explicitly compute

C2n = 2Re

[∫ π
2

0
ei2nθ sin θ

e− x2

a (cos θ )
1
β
−1 cosh

√
− 4b′x2

a2 ln(cos θ )√−βπ ln(cos θ )
dθ

]

(4.5.1)

and C2n+1 = 0 for n = 0, 1, 2, . . . , utilizing the fundamental property of Cheby-
shev polynomials, Tn(ξ ) = cos(nθ ) where θ = cos−1(ξ ). And the large n asymp-
totics of C2n is revealed through evaluating the integral of the complex function

I (z) = ei2nz sin z
e− x2

a (cos z)
1
β
−1 cosh

√
− 4b′x2

a2 ln(cos z)√−βπ ln(cos z)
(4.5.2)



PDF’s for Passive Scalar Diffusion in a Random Flow 945

on the contour C1
⋃

C2
⋃

C3 in the complex z−plane where

C1 = {z = iy, 0 ≤ y ≤ T }, C2 =
{

z = x + iT, 0 ≤ x ≤ π

2

}
,

C3 =
{

z = π

2
+ iy, T ≥ y ≥ 0

}

and sending T to infinity. This contour is the steepest-decent curve that connects
z = 0 and z = π

2 . The detailed analysis for I (z) will be shown in Appendix, which
suggests that for large n, |C2n| is asymptotically proportional to

cosh

(
2x

√
b′

a

√
ln n

)
n− 1

β (ln n)−α (4.5.3)

where α = 1
2 , 1 or 3

2 depending on different values of x and β, which is shown
in the Appendix. As a result,

∑∞
n=0 |Cn| converges for β < 1 for x �= 0 and for

β ≤ 1 when x = 0. And this serves as the criterion for the pointwise, uniform
convergence of the series expansion for f (ξ ) =

√
1 − ξ 2 Px,t (ξ ) = ∑∞

n=0 C2nT2n

in [0, 1], due to the boundedness of Chebyshev polynomials in this interval.
Furthermore, from the relationship (3.5.2) between the Péclet number Pe =

σ 2

κ
and β, and the fact that β is an increasing function of time for fixed σ and

κ , we conclude that Pe = 2 is the critical value that distinguishes the pointwise
convergence of the series reconstruction via the standard Chebyshev polynomials
at all times. However, it can be easily verified that with the shifted Chebyshev
polynomials, the series expansion converges for arbitrary (x, t) and Pe, by simply
replacing 1

β
with 1

β
+ 1 in (4.5.3).

5. NUMERICAL RESULTS OF SERIES RECONSTRUCTION

5.1. Reconstruction via Extension to [−1, 1] for T0(x) = e−x2

First we carried out the reconstruction for the PDF (2.5) using series
approximants

Px,t (ξ ) ≈
∑N−1

n=0 C2nT2n(ξ )√
1 − ξ 2

(5.1.1)

by evenly extending it to [−1, 1]. The numerical results are illustrated in Fig. 1,
which compares the exact PDF (solid line) with its series reconstruction (dashed
line) obtained by setting N = 4 in (5.1.1) (first 4 even moments are used). Four
reconstructions are done at t = 1 for different x and Pe values. We note that the
similar case with an odd extension yields a nearly identical comparison.

The reconstructions in the upper two panels, in which x = 0 and Pe ≤ 2, agree
with the exact PDF with error near the singularity ξ = 1, respectively; while the
two in the lower panels, in which x �= 0, Pe = 2 or x = 0, Pe > 2, fail to recover
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Fig. 1. 4-Term Chebyshev Reconstructions of the PDF at t = 1.

the true distributions almost everywhere. Recall that the series reconstruction is
expected to fail whenever Px,t (0) = ∞, since the truncated series (5.1.1) is always
smooth at ξ = 0.

Does an increasing N help reducing the error? The answer is no. In the
left panel of Fig. 2, we increase N to 40 and compare the series reconstruction
using the standard Chebyshev polynomials to the exact PDF for x = 2, t = 1 and
Pe = 4. We can see the rapid oscillations near ξ = 0, which is a characteristic
of high order polynomials in a finite interval, let alone the fact that to obtain the
coefficients about 40 significant digits are required for accurate summation of
Eq. (4.3.3). But an alternative polynomial family can improve the reconstruction.
In the right panel, we reconstruct the PDF via shifted Chebyshev polynomials and
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Fig. 2. Reconstructions of the PDF at t = 1 from Different Orthogonal Polynomials.
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Fig. 3. The Relative Errors of Series Reconstructions VS Number of Terms Kept in (5.1.1).

re-define r (ξ ) =
√

ξ 3(1 − ξ ). Now only 4 terms are needed to approximate Px,t (ξ )
with negligible error. We will discuss how and why alternative choices of r (ξ ) and
the polynomial family improve the reconstruction later in this section.

Figure 3 further shows the slow convergence rate of the reconstructions with
increasing N , the number of terms used in the series (5.1.1), although when x = 0,
β ≤ 1, the relative errors are much smaller (less than 1% when N = 4). Here the
relative error is defined by

εN =

∥∥∥∥∥Px,t (ξ ) −
∑N−1

n=0 C2nT2n(ξ )√
1 − ξ 2

∥∥∥∥∥
2

‖ Px,t (ξ ) ‖2
. (5.1.2)

5.2. Improving Series Reconstruction

Let us see how alternative choices of r (ξ ) and the polynomial family improve
the reconstruction. Letting r (ξ ) =

√
ξ 3(1 − ξ ) and Qn(ξ ) = T ∗

n (ξ ) as discussed
in Sec. 4.4, we can reconstruct the PDF with only 4 terms (first 4 moments
are used), to achieve a relative error less than 1%, which is shown in Fig. 4,
in contrast to the lower two panels in Fig. 1. The negligible errors suggest that
the performance of the series reconstruction relies on the capability of (r (ξ ))−1

to recover the singularities in Px,t (ξ ), since the numerator in (5.1.1) is always
continuous in [0, 1]. For example, when x �= 0 and β ≥ 1, we know from (2.5)
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Fig. 4. 4-Term Shifted Chebyshev Reconstructions of the PDF at t = 1.

and Table 1 that Px,t (0) = Px,t (1) = ∞. Therefore [r (ξ )]−1 = [ξ
√

(1 − ξ 2)]−1,
which has two singularities at ξ = 0 and 1, should be adopted instead of [r (ξ )]−1 =
[
√

(1 − ξ 2)]−1. Of course, r (ξ ) should be defined in such a way that r (ξ )w(ξ ) = ξ k

where k is an non-negative integer and thus the coefficients can be computed
using statistical moments as shown in (4.4.1). Figure 5 is a comparison between
the convergence rates of reconstructing the same PDF using the following three
different combinations of r (ξ ) and Qn , each of which corresponds to one curve in
either panel

1. Shifted Legendre polynomials defined on [0, 1] and r (ξ ) = ξ (1 − ξ );
2. Shifted Chebyshev polynomials defined on [0, 1] and r (ξ ) =

√
ξ 3(1 − ξ );

3. Standard Chebyshev polynomials defined on [−1, 1] and r (ξ ) =
ξ
√

1 − ξ 2.

In the left panel of Fig. 5, x = 3, Pe = 2 and t = 1, so Px,t (0) = Px,t (1) = ∞;
whereas on the right, x = 0, Pe = 2 and t = 1, so Px,t (0) = 0, Px,t (1) = ∞.
Notice that the number of singularities in [r (ξ )]−1 is greater than (right) or equal
to (left) that of the exact PDF (2.5) for all three choices. For both PDF’s, shifted
Chebyshev polynomials give the optimal results, with relative errors of ∼1% when
only 8 moments are used. It should also be noted that when we under-estimate
the number of singularities, the reconstructions from any of the three polynomial
families converges very slowly. This is not surprising because as we mentioned in
Sec. 3.4, f (ξ ∗) = r (ξ ∗)Px,t (ξ ∗) = ∞ for some ξ ∗ ∈ [0, 1] when this occurs.

Figure 5 also shows that even when the correct singularities are built into
r (ξ ), the reconstructions using standard Chebyshev polynomials via extension
converges much more slowly than those without extension. Other than the fact
that different regularization functions are used here, extensions should be avoided
if possible since they may introduce non-smoothness of f (ξ ) at the interior point
ξ = 0 which can affect the convergence rate. More detailed quantitative analysis
on this will be addressed in our future work.
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Fig. 5. Convergence Rates for Different r (ξ ) and Qn(ξ ).

6. MONTE-CARLO SIMULATIONS AND PDF DYNAMICS

The purpose of this section is to study the effectiveness of Monte-Carlo
methods applied in the problem (2.1), when the exact PDF for the tracer is known
at all times. The Monte-Carlo simulation for Eq. (2.1) is straightforward by spectral
methods, along with a simple random number generator. Moreover, at a fixed time
t , the Monte-Carlo simulation for the tracer can be made easier by sampling
W (t) from a mean-zero Gaussian random variable with variance σ 2t from the
scaling property of Wiener Processes. Nonetheless, to study the full temporal
evolution of Px,t (ξ ), one has to simulate the complete Wiener path W (t), which
is discretized as a sum of independent Gaussian random variables using standard
techniques, (12) namely, W (t) � ∑N

i=0 dwi where dwi ∼ N (0, σ 2�ti ).
For general stochastic flows and initial data, the analytic solution to the

random advection-diffusion problem is not available as well as the exact scalar
PDF. Monte-Carlo simulation is a powerful numerical tool to approximate the
PDF and investigate its dynamics in such cases. Moreover, accurate Monte-Carlo
simulations can be used to benchmark the performance of the PDF reconstructions
via orthogonal polynomials discussed in the previous sections.

6.1. Uni-Modal Positive, Gaussian Initial Data T0(x) = e−x2

We will first examine the case with the initial data T0(x) = e−x2
, for which we

have the exact PDF (2.5) and exact moments (3.2.12) to evaluate the Monte-Carlo
simulations. As we will see, the simulation does give an accurate approximation
to the exact PDF and recover its spatio-temporal dynamics with a certain number
of realizations.

6.1.1. Monte-Carlo Simulations

Figure 6 depicts the spatial structure of Px,t (ξ ) obtained by two different
approaches: exact formula (2.5) and Monte-Carlo simulations. Here Pe = 2 and



950 Bronski et al.

Fig. 6. Comparison Between the Exact PDF (2.5) and MC Simulations, Horizontal Axis—
Renormalized Tracer ξ , Vertical Axis—Spatial Variable x , *: Grayscale ramp uniformly set in [0,2],
same in all other grayscale figures.

t = 1. To obtain each histogram to simulate Px,t=1(ξ ), 105 samples are drawn by
the Monte-Carlo simulator and 100 bins are distributed uniformly between [0, 1].
Each panel is a snapshot of Px,t (ξ ), exact on the left and Monte-Carlo simulated
on the right, at time t = 1. The horizontal axis is the renormalized scalar ξ -axis,
ranging from 0 to 1, and the vertical axis is the spatial x-axis between [−5, 5]. The
grayscale ramp is set uniformly between [0, 2] such that regions where Px,t (ξ ) ≈ 0
are dark, whereas bright regions implies Px,t (ξ ) >∼ 2. For example, if we take a
horizontal slice of the left panel along x = 3, and interpret the brightness with
corresponding numbers, we would recover the solid curve shown in the lower-left
panel of Figure 1.

The overall agreement between the Monte-Carlo simulations and the exact
PDF is obvious from Fig. 6. To benchmark quantitatively the performance of
the Monte-Carlo simulator, we first compare the exact moments of the random
variable ξ with the moments generated from the simulation histogram. A valid
Monte-Carlo simulation should converge to the exact PDF as the numbers of
realizations increases. Figure 7 is the summary of the two tests mentioned above,
where x = 2, β = 1, t = 1 and 100 bins are used to construct the histograms.
The relative error plotted in the right panel is defined similarly to Eq. (5.1.2) by
replacing the series reconstruction with the simulated histogram.

In the left panel, we can see that the simulated moments coincide with the
exact moments for n <∼ 1000. The right panel depicts the L2 relative error which
shows improved convergence with the number of realizations increasing from 104

to 107.
With increasing M , the number of realizations, the relative error first de-

cays like 1√
M

, while it remains almost the same for M ≥ 106. We also find
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Fig. 7. Benchmarking the Monte-Carlo Simulator, Left: Exact Moments VS Simulated Moments,
Right: Relative Error in Px,t (ξ ) VS Number of Realizations.

that the pointwise relative error is negligible (∼ 0.1%) when M ≥ 105 ev-
erywhere in [0, 1] except near the singularity ξ = 1. This error saturation is
however inevitable with any simulation approach because of the systematic
bias introduced by discretization errors, the finite statistics, histogram binning,
etc.

6.1.2. Spatio-Temporal PDF Dynamics

We have seen that with 105 realizations (with L2 relative error ∼1%), the
Monte-Carlo simulation favorably reproduce measure, which serves as a tool to
study more complicated PDF evolution for cases where the exact PDF is not
available. As a test problem, first we present the dynamics associated with the
exact PDF (2.5). For the deterministic heat equation, namely σ = 0, it is clear
that Px,t (ξ ) = δ(ξ − e−x2/b′

) for any x and t , as we have seen in Sec. 2.5. But
how does the random drift change the PDF dynamics? Figures 8 and 9 together
offer a comprehensive illustration of the spatial-temporal structure of Monte-
Carlo simulations of Px,t (ξ ) when Pe = 2. In both figures, different panels, which
are the counterparts of the right panel in Fig. 6 at different times, form a time
sequence showing the dynamical behavior of Px,t (ξ ). Here replacing the Monte-
Carlo simulations with the exact PDF will not change the dynamics at all since
their relative difference is only about 1%. Initially at t = 0, for any (ξ, x),
Px,t=0(ξ ) = δ(ξ − e−x2

) since the initial data is deterministic. That is, Px,t=0(ξ ) =
0 except on the curve (e−x2

, x), which is the rotated Gaussian in the top-left
panel in Fig. 8. Immediately after that, the random drift smears the deltas and
we see a gray ribbon developing around the curve. Gradually, for any nonzero x ,
the majority of the probability will shift towards ξ = 1 since from Eq. (3.3.2),
Px,t (ξ ) ∼ P0,t (ξ ) as t → ∞, which has a singularity at ξ = 1. Moreover, from
the panels t = 0.08, 0.1, 0.25 and 0.5 in Fig. 8, we conclude that for those x’s in
the core of the Gaussian, the probability shifts faster than for those in the tails of
the Gaussian.
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Fig. 8. The Short Time Dynamics of Px,t (ξ ): from Gaussian to Ribbons.

This explains the emergence of:

1. Two bright, white regions at the junctions between the core and the tails
of the initial Gaussian when t = 0.5. For these x values, the singularity
in the initial delta function slowly begins to disappear and the probability
“smears” around these junctions.

2. Two gray ribbons around the core region of the initial Gaussian when
t = 0.5, in which the probability density is substantially greater than 0
(black) but not very large (white). For any fixed x within this region, the
transient measure Eq. (2.5) is drastically different from the initial measure
δ(ξ − e−x2

) and is converging to its long time asymptotic limit Eq. (3.1.3).
3. A bright, white region near (ξ = 1, x = 0), within which Px,t (ξ ) ≈

P0,t (ξ ).

The time series shown in Fig. 8 continues in Fig. 9. Notice that two high
density regions near ξ = 0 “moves away” from the line x = 0 towards large |x |
values. Eventually when t = 500, the initial Gaussian disappears completely. For
|x | ≤ 10, the brightness is almost homogeneous in x direction and we see only
vertical stripes. This agrees with Eq. (3.3.2), namely, Px,t (ξ ) is uniform in x when
t → ∞. However, this argument should be valid only over compact sets, since if we
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Fig. 9. The Long Time Dynamics of Px,t (ξ ): from Ribbons to Stripes.

extend the plotted portion of x-axis, we will see the two bright, white regions again.
In fact, this moving speed can be estimated here to be proportional to 1/

√
t , which

is ultimately attributed to the x2/t self-similarity that we discussed in Sec. 3.3 and
can be seen from Eq. (2.5). For general models with such behavior, one way to
identify the speed is to find |x̃ | where x̃ maximizes Px,t (D) for some small number
D as a function of t , which is approximately the |x | value at the centers of the high
density regions. At the spatial locations with larger |x | values, Px,t (D) is smaller
since the initial scalar profile concentrated near x = 0 has not yet arrived via
diffusion. Thus the probability is confined in a very small interval with ξ � D,
while for smaller |x |, Px,t (D) is also smaller since these locations are inside
the core of the diffusing Gaussian and the probability accumulates near ξ = 1.
Therefore, ±x̃ can be regarded as the “fronts” of the averaged tracer concentration.
Setting D = 0.1 and with time running from 1 to 106, we obtained Fig. 10. The
interpretation of the slope ∼0.5 is that x̃2 ∝ t and then the speed dx̃/dt ∝ 1/

√
t .

This confirms that the random solution (3.1.1) inherit the self-similarity from the
pure heat equation. Essentially, for this simple random advection, the averaged
tracer concentration is govern by a heat equation with an effective diffusivity
computed by the Green-Kubo formula.
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Fig. 10. The |x | Value at the “Information Fronts” of VS Time.

6.1.3. Effects of the Péclet number

As we mentioned in Sec. 3.5, the Péclet number Pe = σ 2

κ
dictates Px,t (ξ ) at

large times. Figure 11 demonstrates the spatio-temporal evolutions of Px,t (ξ ) for
different values of Pe. Recall that from Eqs. (2.5), (3.3.2) and (3.5.2),

lim
t→∞ Px,t (ξ ) = lim

t→∞ P0,t (ξ ) =
√

2 ξ
2
Pe −1

√
Pe π ln ξ

(6.1.1)

where Pe characterizes the competition between the random drift and the diffusion.
This is manifested in the t = 500 panels, in which more and more density shifts
from near ξ = 1 and accumulates near ξ = 0 with increasing Pe, although the
short-time PDF behaviors when t < 0.5 are similar for these four Pe values. This
shift in the PDF is attributed to the fact that the higher Pe is, the more turbulent
the flow is and therefore the higher probability the scalar has to access far-field,
small values.

6.2. Bimodal Initial Data T0(x) = 2xe−x2

For this initial data, the general exact PDF solution is not available. However,
we can still solve the linear, random advection-diffusion problem (2.1) analytically,
by simply taking the spatial derivative of (3.1.1) and the exact solution for T0(x) =
2xe−x2 = − d

dx e−x2
reads

T (x, t) = 2(x − W (t))

(1 + 4κt)
3
2

exp

(
− (x − W (t))2

1 + 4κt

)
. (6.2.1)
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Fig. 11. Effects of the Péclet number for T0(x) = e−x2
.

which has two extrema (bimodal) in x-direction. Now we can re-define Tmax(t) =√
2 e−1

4κt+1 such that the random variable ξ = T (x,t)
Tmax(t) ∈ [−1, 1] and its exact statistical

moments are

〈T N 〉γ =
(

4a

b′2(aN + b′)

) N
2 e− N x2

b′ + βN2 x2

aN+b′√
π (1 + βN )

×
N∑

j=0,

j even

(
N

j

)(
x√

a(1 + βN )

)N− j

�

(
j + 1

2

)
. (6.2.2)

from similar calculations as in Eq. (3.2.9).
Although in this case, the exact PDF is not available by performing inverse

Laplace transform as shown in Sec. 3.4, we are able to find the space-independent,
limit distribution P∞(ξ ) as t → ∞ as follows. First, the long time asymptotic
moments are

〈ξ N 〉γ ∼ 1 + (−1)N

2

(
e Pe

1 + PeN/2

) N
2 �( 1+N

2 )√
π (1 + PeN/2)

. (6.2.3)



956 Bronski et al.

Notice that this is not in the form of Eq. (3.3.2) because T̂0(0) = 0. These moments
are reminiscent of formulas involving the Lambert W- or tree functions, (11) which
provides a generating function for the number of rooted trees on n points. Using
this observation we have been able to explicitly compute the distribution in terms
of the tree function as follows: If we define the functions wi (ξ ), i = −1, 0 for
any ξ ∈ [0, 1] by

wi e1−wi = x, w−1(1) = w0(1) = 1, w0(0) = 0 and w−1(0) = ∞ (6.2.4)

we have

1√
eπPe

∫ 1

−1
ξ N

(
e

Pe−2
2Pe w0(ξ 2)

1 − w0(ξ 2)
− e

Pe−2
2Pe w−1(ξ 2)

1 − w−1(ξ 2)

)
dξ

= 1 + (−1)N

2
√

eπPe

(∫ 1

0
x

N−1
2

e
Pe−2
2Pe w0(x)

1 − w0(x)
dx −

∫ 1

0
x

N−1
2

e
Pe−2
2Pe w−1(x)

1 − w−1(x)
dx

)

= 1 + (−1)N

2
√

eπPe

∫ ∞

0
w

N−1
2 e

N+1
2 (1−w)+ Pe−2

2Pe wdw

= 1 + (−1)N

2

(
e Pe

1 + PeN/2

) N
2 �

(
1+N

2

)
√

π (1 + PeN/2)
(6.2.5)

in which we introduce the changes of variable ξ = √
x and x = we1−w. Therefore,

P∞(ξ ) = e
Pe−2
2Pe w0(ξ 2)

1 − w0(ξ 2)
− e

Pe−2
2Pe w−1(ξ 2)

1 − w−1(ξ 2)
, ξ ∈ (−1, 1). (6.2.6)

Further, the singular limits of the PDF as ξ approaches 0 and ±1 are

lim
ξ→(−1)+,1−

e
Pe−2
2Pe w0(ξ2)

1 − w0(ξ 2)
− e

Pe−2
2Pe w−1(ξ2)

1 − w−1(ξ 2)
= lim

ε→0+
e

Pe−2
2Pe (1−ε)

ε
− e

Pe−2
2Pe (1+ε)

−ε
= +∞

lim
ξ→0+,0−

e
Pe−2
2Pe w0(ξ2)

1 − w0(ξ 2)
− e

Pe−2
2Pe w−1(ξ2)

1 − w−1(ξ 2)
= lim

ε→0+
e

Pe−2
2Pe ε

1 − ε
− εe

Pe−2
2εPe

ε − 1
=
{

1, Pe ≤ 2
+∞, Pe > 2

.

(6.2.7)

So again, from the series reconstruction perspective, Pe = 2 is the critical value.
Also, when Pe > 2, the scalar has a much higher probability of being near 0 due
to a singularity.

Figure 12 through 15 are the Monte-Carlo simulations that illustrate the
spatio-temporal dynamics of Px,t (ξ ) with T0(x) = 2xe−x2

. Similar to the PDF
evolution shown in Figs. 8 and 9, the initial Dirac mass supported by the curve
(
√

2exe−x2
, x) is smeared as time advances. We observe that the smearing is

symmetric with respect to the origin in the x − ξ plane, due to the symmetry of
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Fig. 12. The PDF Dynamics of Px,t (ξ ) with T0(x) = 2xe−x2
where Pe = 2.

the initial profile and the x-independence of the random drift. Also, four high
density regions emerge near ξ = 0 and ξ = ±1. For Pe = 4, the high density
regions near ξ = 0 remains for all x’s at t > 1, whereas they vanishes for Pe = 2.
Figures 12 and 13 also suggest that at the edges of the high density regions near
ξ = 0, if we fix x , there seems to be a “jump discontinuity” in the PDF at ξ = 0,
where the grayscale changes abruptly from dark to bright. This is different from
the singularities as we see where Px,t (ξ ) = ∞ and it is most noticeable in the
t = 1, 5 panels in Fig. 12 and t = 0.25, 0.5 panels in Fig. 13. Figure 14 is an
illustration of such a phenomena at x = 2.5, t = 1 for Pe = 2, which is essentially
a horizontal slice of the “Time=1” panel in Fig. 12. The rigorous analysis for this
phenomena is an open question since the exact PDF is not available. An intuitive

Fig. 13. The PDF Dynamics of Px,t (ξ ) with T0(x) = 2xe−x2
where Pe = 4.
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Fig. 14. “Jump Discontinuity” of Px,t (ξ ) with T0(x) = 2xe−x2
.

explanation can be made since the initial tracer field T0 = 2xe−x2
has a positive

bump near x = 2.5, which is translated by random advection and is smoothed by
molecular diffusion as time advances. But by t = 1, the tracer at these locations
will remain positive, often small, unless the initial field is randomly translated so
far away that the tracer can admit negative values which are initially located at
x < 0. Such a rare, large deviation has a probability much smaller than that of the
realizations producing a positive scalar at (x = 2.5, t = 1), which leads to a jump
discontinuity in the tracer PDF at ξ = 0.

Eventually at t = 1000, we see in Fig. 15 three high density, vertical stripes,
near ξ = 0 and ξ = ±1 respectively, for Pe = 4, whereas only two such stripes
exist near ξ = ±1 for Pe = 2.

The formula (6.2.3) also allows us to perform series reconstructions using
the moments as discussed in Sec. 3, with which we compare the Monte-Carlo
simulations in Fig. 16 and two approximations exhibit favorable agreement. Here
we employ standard Chebyshev polynomials to reconstruct the PDF and we set
r (ξ ) =

√
1 − ξ 2 for Pe = 2 and r (ξ ) = ξ

√
1 − ξ 2 for Pe = 4. And the extensions

discussed in Sec. 3.3 is not required here because ξ ∈ [−1, 1]. In Fig. 16, the limit
distributions P∞(ξ ) are not plotted since it overlaps completely with the series
reconstructions.

6.3. Bimodal, Positive Initial Data T0(x) = e−(x−A)2 + e−(x+A)2

For this initial data, which is a sum of two Gaussians, the exact PDF solution
is not available, although the corresponding random advection-diffusion problem
(2.1) can again be solved analytically since it is linear. Moreover, we can obtain
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Fig. 15. Monte-Carlo Simulations for Px,t (ξ ) with T0(x) = 2xe−x2
at t = 1000.

the exact moments for the renormalized scalar utilizing Eq. (3.2.10)

〈ξ N 〉γ = 2−N√
1 + a

b′ N
exp

(
− Nπ2(x + A)2

aN + b′

) N∑
j=0

(
N

j

)

× exp

(
4π2 Aj[a A( j − N ) + bx]

b′(aN + b′)

)
. (6.3.1)

It is obvious that in the long time limit 〈ξ N 〉γ ∼ (1 + Pe
2 N )−

1
2 and thus the

PDF is asymptotically equal to P0,t (ξ ) for the uni-modal, Gaussian data T0(x) =
e−x2

from Eq. (3.2.12). In fact, this has been discussed in Sec. 3.3, since for
large times b = 4κt ∼ 4κt + 1 = b′ and therefore the PDFs for T0(x) = e−x2

(T̂0(0) �= 0) and T0(x) = δ(x) are asymptotically equal to each other.
The short time PDF dynamics for this initial data has a unique feature different

than the two cases we have seen in Secs. 5.1 and 5.2 — another singularity emerges
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Fig. 16. 10-Term Series Approximations of P0,t (ξ ) with T0(x) = −2 xe−x2
at t = 1000.
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Fig. 17. Short Time PDF Dynamics for T0(x) = e−(x−2)2 + e−(x+2)2
.

besides the ones at ξ = 0, 1. This is illustrated in Fig. 17. We can see from the
figure that a singularity near x = 0 moves towards ξ = 1 as time increases and
eventually merges with the singularity at ξ = 1. It is easy to check numerically
that the ξ value at this singularity is approximately the corresponding pure heat
solution at x = 0, which is a local minimum. This minimum becomes a maximum
at a later time so it will merge with the maximum at ξ = 1 at later times. In light of
this observation, next we present an explanation of why the singularities of Px,t (ξ )
can only appear at the extrema of the renormalized pure heat solution.

6.4. Identifying the Singularities in Px,t (ξ )

Now we show that, at time t, if (x∗, ξ ∗ = T (x∗,t)
Tmax(t) ) with |x∗| < ∞ is a critical

point, namely, ∂
∂x ( T (x∗,t)

Tmax(t) )|x=x∗ = 0, then Px,t (ξ ∗) = ∞ for any x, provided that
T (x,t)
Tmax(t) is differentiable in x and satisfies the Lipshitz condition locally. To see this,
we consider

p(ε) := Prob

(∣∣∣∣T (x∗, t)

Tmax(t)
− ξ ∗

∣∣∣∣ < ε

)
=
∫

I
Px,t (ξ ) dξ (6.4.1)

for any small ε > 0, where the integration interval I = [ξ ∗ − ε, ξ ∗ + ε] ∩ [0, 1].
Thus Px,t (ξ ∗) = ∞ if and only if limε↓0

ε
p(ε) = 0. Notice that for the same ξ ∗,



PDF’s for Passive Scalar Diffusion in a Random Flow 961

there can be multiple x∗’s such that T (x∗,t)
Tmax(t) = ξ ∗, but it suffices to consider the case

where there is only one such x∗ because we will see that we only need a lower
bound for p(ε) here.

Next we take the Taylor expansion of renormalized, random solution near
(x∗, ξ ∗). For the test problem (2.1), we can simply expand the pure heat solution,
which is just a rigid translation of the random solution (3.2.1), and then replace
x by x − W (t). It is clear that when |x − W (t) − x∗| is small, the renormalized
random tracer satisfies

∣∣∣T (x∗, t)

Tmax(t)
− ξ ∗

∣∣∣ ≤ Kx∗ |x − W (t) − x∗|p (6.4.2)

for some constant p > 1 and Kx∗ > 0 determined by x∗, since (x∗, ξ ∗) is a critical
point. Therefore Kx∗ |x − W (t) − x∗|p < ε implies | T (x∗,t)

Tmax(t) − ξ ∗| < ε and conse-
quently, Prob(Kx∗ |x − W (t) − x∗|p < ε) ≤ p(ε). The probability on the left hand
side of the inequality can be shown to be O(ε1/p), via evaluating an elementary
Gaussian integral. Thus limε↓0

ε
p(ε) = 0.

However, the above arguments do not apply to ξ ∗ = 0, the heat solution
at |x | = ∞, since we do not have local Taylor expansions at infinity. They also
fails when there are infinitely many x∗’s such that T (x∗,t)

Tmax(t) = ξ ∗ and any (x∗, ξ ∗)
is not a critical point. Moreover, the question of whether such singularities at
critical points exist in more complicated turbulent flows, where the solution is
not just a random translation of the pure heat solution, remains open for further
study.

7. EXTENDED MODEL WITH A SOURCE TERM

Many geophysical problems are characterized not just by transport and dif-
fusion, but also involve strong external sources, either through scalar production
or destruction. (21,27) In the present calculation, to understand the role of such
phenomena, scalar sources can be modeled with the addition of a scalar, deter-
ministic, steady forcing function, �(x), and the governing equation for the scalar
(2.1) becomes

∂T

∂t
+ γ (t)

∂T

∂x
= κ

∂2T

∂x2
+ �(x) (7.1)

It is interesting to compare the long time spatial distributions with and without the
random white wind field. To have a finite long time limit, it is essential that the
source function have spatial mean zero, namely,

∫∞
−∞ �(x)dx = 0.
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The long time asymptotic solution, assumed to be non-zero, is given by

T ω
∞(x) = lim

t→∞

∫ ∞

−∞
e2π ikx�̂(k)

[∫ t

0
e−4π2k2κs−2π ikW (s)ds

]
dk

=
∫ ∞

−∞
e2π ikx T̂ ω∞(k) dk (7.2)

where �̂(k) is the Fourier transform of �(x). Notice that the effect of the initial
data vanishes since it decays to 0 at long time. If the random advection were absent
(the deterministic analogue), namely γ (t) ≡ 0, it is easy to verify that

T̂∞(k) = �̂(k)

4π2k2κ
(7.3)

Now we consider the mean of the random field T ω
∞ in the presence of the

white wind

〈T̂ ω∞(k)〉 = �̂(k) lim
t→∞

∫ t

0
e−4π2k2κs〈e−2π ikW (s)〉 ds = �̂(k)

4π2k2(κ + σ 2

2 )
(7.4)

according to Eq. (7.2). This is just the counterpart of its deterministic version (7.3)
by replacing κ with the effective diffusivity κ + σ 2

2 , namely,

〈T ω
∞(x)〉

T∞(x)
= 〈T̂ ω∞(k)〉

T̂∞(k)
= 1

1 + Pe
2

. (7.5)

This shows that the effect of the white wind on a sourced passive scalar equation
always leads to a long time spatial distribution with mean values smaller than the
deterministic counterpart, with an explicit, Péclet-dependent reduction.

Next we compare the mean of the two-point correlator of the random field

in Fourier domain, 〈T̂ ω,2∞ ( j, k)〉, with that of its deterministic analogue, T̂ 2∞( j, k).
To recover the second moment of the random field, we only need to perform the
two-dimensional inverse transform

〈
[T ω

∞(x)]2
〉 =

∫
R

2
e2π i( j+k)x

〈
T̂ ω,2∞ ( j, k)

〉
d j dk (7.6)

and likewise for T 2
∞(x). Explicit integrations over simplices in R

2 yield

∣∣∣∣ 〈T̂
ω,2∞ ( j, k)〉

T̂ 2∞( j, k)

∣∣∣∣ = 1

1 + Pe
2

1

1 + Pe
2

( j+k)2

j2+k2

<
1

1 + Pe
2

(7.7)

for finite Pe, that is, the magnitude of each Fourier component of the second
moment is also reduced in the presence of the random wind, with a similar Pe
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dependent reduction. We also generalize these calculations for the higher order
moments of the random field: T ω

∞

〈
T̂ ω,N∞ (k1, . . . , kN )

〉 = (4π2)−N
N∏

i=1

�̂(ki )

×
∑

p1,...,pN

[
N∏

i=1

(
κ

i∑
j=1

k2
p j

+ σ 2

2

⎛
⎝ i∑

j=1

kp j

⎞
⎠

2 )]−1

(7.8)

where {p1, p2, . . . , pN } is any permutation of {1, 2, . . . , N }. These preliminary
results indicate a non-trivial distribution and we will explore more thoroughly in
future work.

8. CONCLUSIONS AND FUTURE WORK

We have explored the probability measures for a renormalized passive scalar
diffusing in the presence of a random, Gaussian, white in time, wind field using
a combination of tools. For initial data which is a single pure Gaussian profile,
we are able to explicitly calculate in closed form the complete spatio-temporal
probability measure. This is of great value in understanding the procedure for
re-summing a measure from its statistical moments in that it provides an ex-
act test problem, and further provides a mean to calculate directly asymptotic
convergence rates for the reconstruction. For more general initial data, explicit
calculations are not generally available, and we utilized well benchmarked orthog-
onal polynomial expansions and Monte-Carlo simulations for the reconstruction.
For the bimodal initial data corresponding to the spatial derivative of a single
Gaussian, we are able to explicitly calculate the exact long time asymptotic PDF,
which was also useful in validating the Monte-Carlo simulations. For initial data
comprised of a sum of spatial Gaussians, we employed Monte-Carlo simulation
which documented the possibility of an interior singularity in the probability
density function.

This elementary model provides a clear picture for the role in which the
Péclet number plays in adjusting the spatio-temporal structure of the probability
measure. Specifically, these calculations show a clear transition between the pure
heat decay problem, which corresponds to a Dirac mass located at the heat solution,
δ(ξ − e−x2/(4κt)), and the pure advection case which formally is recognized as the
singular limit of infinite Péclet number, corresponding to the Dirac mass δ(ξ ). In
such a case at large times, any observer at a fixed location is almost sure to be far
from the center of where the initial distribution has been shifted. Between these
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two extreme cases, there is a balance between diffusion and advection, and the
calculations provide the explicit measures depicting this balance.

These studies provide solid benchmarking for future studies involving more
complicated fluid flows for which only a finite number of a statistical moments may
be available. In such cases, we can approximate the probability measures of the
random quantity with orthogonal polynomial expansions without the knowledge
of the exact PDF.

APPENDIX

A.1. The Proof for Eq. (3.2.9)

By straightforward inductions, the formula for the characteristic polynomial
of AN reads

PN (λ) = π2N (λ − b)N−1(λ − Na − b) (A.1)

The eigenvector associated with the non-degenerate eigenvalue π2(Na + b)
of AN defined in (3.2.5) is explicitly �vN = { 1√

N
, 1√

N
, . . . , 1√

N
}t , on account of the

elementary matrix vector product for this eigenvector AN �vN = π2(Na + b)�vN .
Therefore in Eq. (3.2.9)

Vm =
N∑

n=1

vmn =
√

N �v t
m · �vN =

{
0, m �= N

√
N , m = N

(A.2)

since when m �= N , �vm are eigenvectors associated with the multiple eigenvalue
π2b.

A.2. Detailed Asymptotic Analysis for Expansion Coefficients Cn

Integrating I (z) defined in (4.5.2) on C1 defined in Sec. 4.5 for large n, we have

lim
T →∞

∫
C1

ei2nz sin z
e− x2

a (cos z)
1
β
−1 cosh

√
− 4x2b′

a2 ln(cos z)√−βπ ln(cos z)
dz

= −ie− x2

a

∫ ∞

0

e−2ny sinh y (cosh y)
1
β
−1 cos

√
4x2b′

a2 ln(cosh y)√
βπ ln(cosh y)

dy (A.8)
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which is purely imaginary since ln(cosh y) is non-negative. Clearly, the contribu-
tion from C2 is bound to vanish as T → ∞. Finally, on C3, for large n,

lim
T →∞

∫
C3

ei2nz sin z
e− x2

a (cos z)
1
β
−1 cosh

√
− 4x2b′

a2 ln(cos z)√−βπ ln(cos z)
dz

= e− x2

a −i( π
2β

−nπ)

√
βπ

∫ ∞

0

e−2ny cosh y (sinh y)
1
β
−1 cosh

√
− 4x2b′

a2 ln(−i sinh y)√− ln(−i sinh y)
dy

∼ (−1)ne− x2

a −i π
2β

√
βπ

∫ ε

0

e−2ny cosh y (sinh y)
1
β
−1 cosh

√
− 4x2b′

a2 ln(−i sinh y)√− ln(−i sinh y)
dy

(A.9)

for 1 � ε > 0 fixed since

∣∣∣∣∣
∫ ∞

ε

e−2ny cosh y (sinh y)
1
β
−1 cosh

√
− 4x2b′

a2 ln(−i sinh y)√− ln(−i sinh y)
dy

∣∣∣∣∣ < Kεe−2nε

(A.10)

where Kε is a constant determined by ε and and we will see that this is negligible
compared to the contribution from the interval [0, ε] for large n. Moreover, the
last integral in (A.9) can be asymptotically approximated by

(−1)n

√
1

βπ
e− x2

a −i π
2β

∫ ε

0

e−2ny cosh
√

− 4x2b′
a2 ln(−iy) y

1
β
−1

√− ln(−iy)
dy (A.11)

since for 0 ≤ y ≤ ε, cosh y ∼ 1 and sinh y ∼ y. Further, the contribution from
the interval [0, n−3/2] in (A.11) is bounded by

∣∣∣∣∣
∫ n−3/2

0

e−2ny cosh
√

− 4x2b′
a2 (ln(−iy) y

1
β
−1

√− ln(−iy)
dy

∣∣∣∣∣

< K

∫ n−3/2

0

exp
√

− 4x2b′
a2 ln y

√− ln y
y

1
β
−1 dy

= K̃

⎡
⎣1 − Erf

⎛
⎝
√

3 ln n

2β
−
√

βx2b′

a2

⎞
⎠
⎤
⎦
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= O

⎛
⎝n− 3

2β (ln n)−
1
2 exp

√
6x2b′

a2
ln n

⎞
⎠ (A.12)

as n → ∞, from the large x asymptotics of Erf(x) and here K , K̃ are constants.
Next we claim that the dominating contribution of the integral in (A.11)

comes from the integral [n−3/2, ε]. To see this, it suffices to make a change of
variable r = ny and study

I(n) =
∫ ε

n−3/2

exp
(

− 2ny ±
√

− 4x2b′
a2 ln(−iy)

)
y

1
β
−1

√− ln(−iy)
dy

= 1

n
1
β

√
ln n

∫ εn

n−1/2

exp
[

− 2r ±
√

4x2b′
a2 ln n

(
1 − ln r−iπ/2

ln n

)]
√

1 − ln r−iπ/2
ln n

r
1
β
−1 dr

(A.13)

since for x �= 0, | ln r−iπ/2
ln n | < 1 over this interval and thus the inverse square root

and the exponent in the numerator can be expanded. Then a term-by-term integra-
tion and extending the integration interval to [0,∞] produce a valid asymptotic
series by the Dominated Convergence Theorem applied for any fixed n and by

the fact that lim
n→∞

∫ εn
n−1/2 e−2r r

1
β
−1(ln r − iπ/2) j dr exists and is finite for any j ≥ 0

and β > 0 (a very similar example can be found in Sec. 6.6 of [5]). At leading
order, this yields

I(n) ∼
exp

(
±
√

4x2b′
a2 ln n

)

n
1
β

√
ln n

∫ ∞

0
e−2r r

1
β
−1

[
1 ∓ ln r − iπ/2

2
√

ln n

]
dr, n → ∞

(A.14)

so finally we obtain the asymptotic approximation

|C2n| ∼
∣∣∣∣∣Re

⎡
⎣ �

(
1
β

)
e− x2

a −i π
2β

(2n)
1
β
√

βπ ln n
cosh

√
4x2b′

a2
ln n

(
1 + i

π tanh
√

4x2b′ ln n
a2

4
√

ln n

)⎤
⎦
∣∣∣∣∣

(A.15)

which dominates over (A.10) and (A.12). As a special case, when x = 0 and β =
1

2k+1 , k = 0, 1, . . . , the leading order asymptotics of C2n becomes proportional to

n− 1
β (ln n)−

3
2 because the term exp

(−i π
2β

)
is pure imaginary and the tanh term in

(A.15) vanishes.
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For the shifted Chebyshev polynomials and r (ξ ) =
√

ξ 3(1 − ξ ), a similar
formula is obtained following exactly the same procedure except that 1

β
is replaced

by 1
β

+ 1.
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